最小多項式 (線型代数学)

ja

WikiRank.net
ver. 1.6

最小多項式 (線型代数学)

Quality:

Minimal polynomial - minimal polynomial of a matrix. Article "最小多項式 (線型代数学)" in Japanese Wikipedia has 4 points for quality (as of August 1, 2024). The article contains 0 references and 5 sections. The article also contains quality flaw template, which reduce quality score.

This article has the best quality in Greek Wikipedia. However, the most popular language version of this article is English.

Since the creation of article "最小多項式 (線型代数学)", its content was written by 5 registered users of Japanese Wikipedia and edited by 183 registered Wikipedia users in all languages.

The article is cited 130 times in Japanese Wikipedia and cited 466 times in all languages.

The highest Authors Interest rank from 2001:

  • Local (Japanese): #19604 in November 2010
  • Global: #58812 in April 2010

The highest popularity rank from 2008:

  • Local (Japanese): #155130 in July 2020
  • Global: #267000 in November 2014

There are 18 language versions for this article in the WikiRank database (of the considered 55 Wikipedia language editions).

The quality and popularity assessment was based on Wikipédia dumps from August 1, 2024 (including revision history and pageviews for previous years).

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1Greek (el)
Ελάχιστο πολυώνυμο (γραμμική άλγεβρα)
22.7905
2Italian (it)
Polinomio minimo
16.4154
3English (en)
Minimal polynomial (linear algebra)
14.4699
4Spanish (es)
Polinomio mínimo de un endomorfismo
12.0432
5French (fr)
Polynôme minimal d'un endomorphisme
9.8295
6Russian (ru)
Минимальный многочлен матрицы
9.7613
7Croatian (hr)
Minimalni polinom
7.1384
8Polish (pl)
Wielomian minimalny
6.7199
9Serbo-Croatian (sh)
Minimalni polinom
5.8882
10Ukrainian (uk)
Мінімальний многочлен матриці
4.3272
More...

The following table shows the most popular language versions of the article.

Most popular in all the time

The most popular language versions of the article "最小多項式 (線型代数学)" in all the time
#LanguagePopularity awardRelative popularity
1English (en)
Minimal polynomial (linear algebra)
535 399
2French (fr)
Polynôme minimal d'un endomorphisme
140 263
3Italian (it)
Polinomio minimo
65 957
4Japanese (ja)
最小多項式 (線型代数学)
65 397
5Russian (ru)
Минимальный многочлен матрицы
40 459
6Polish (pl)
Wielomian minimalny
23 352
7Croatian (hr)
Minimalni polinom
12 970
8Serbian (sr)
Минимални полином
5 721
9Czech (cs)
Minimální polynom (lineární algebra)
5 204
10Ukrainian (uk)
Мінімальний многочлен матриці
4 488
More...

The following table shows the language versions of the article with the highest popularity in the last month.

Most popular in July 2024

The most popular language versions of the article "最小多項式 (線型代数学)" in July 2024
#LanguagePopularity awardRelative popularity
1English (en)
Minimal polynomial (linear algebra)
2 357
2Russian (ru)
Минимальный многочлен матрицы
317
3Japanese (ja)
最小多項式 (線型代数学)
281
4French (fr)
Polynôme minimal d'un endomorphisme
219
5Italian (it)
Polinomio minimo
136
6Chinese (zh)
極小多項式 (線性代數)
55
7Persian (fa)
چندجمله‌ای کمینه (جبرخطی)
41
8Vietnamese (vi)
Đa thức cực tiểu (đại số tuyến tính)
34
9Polish (pl)
Wielomian minimalny
26
10Spanish (es)
Polinomio mínimo de un endomorfismo
24
More...

The following table shows the language versions of the article with the highest Authors’ Interest.

The highest AI

Language versions of the article "最小多項式 (線型代数学)" with the highest Authors Interest (number of authors). Only registered Wikipedia users were taken into account.
#LanguageAI awardRelative AI
1French (fr)
Polynôme minimal d'un endomorphisme
46
2English (en)
Minimal polynomial (linear algebra)
36
3Italian (it)
Polinomio minimo
34
4Russian (ru)
Минимальный многочлен матрицы
14
5Croatian (hr)
Minimalni polinom
10
6Polish (pl)
Wielomian minimalny
8
7Chinese (zh)
極小多項式 (線性代數)
6
8Japanese (ja)
最小多項式 (線型代数学)
5
9Ukrainian (uk)
Мінімальний многочлен матриці
5
10Serbian (sr)
Минимални полином
4
More...

The following table shows the language versions of the article with the highest Authors’ Interest in the last month.

The highest AI in July 2024

Language versions of the article "最小多項式 (線型代数学)" with the highest AI in July 2024
#LanguageAI awardRelative AI
1Czech (cs)
Minimální polynom (lineární algebra)
0
2Greek (el)
Ελάχιστο πολυώνυμο (γραμμική άλγεβρα)
0
3English (en)
Minimal polynomial (linear algebra)
0
4Spanish (es)
Polinomio mínimo de un endomorfismo
0
5Persian (fa)
چندجمله‌ای کمینه (جبرخطی)
0
6French (fr)
Polynôme minimal d'un endomorphisme
0
7Croatian (hr)
Minimalni polinom
0
8Italian (it)
Polinomio minimo
0
9Japanese (ja)
最小多項式 (線型代数学)
0
10Polish (pl)
Wielomian minimalny
0
More...

The following table shows the language versions of the article with the highest number of citations.

The highest CI

Language versions of the article "最小多項式 (線型代数学)" with the highest Citation Index (CI)
#LanguageCI awardRelative CI
1Japanese (ja)
最小多項式 (線型代数学)
130
2French (fr)
Polynôme minimal d'un endomorphisme
108
3Italian (it)
Polinomio minimo
96
4Polish (pl)
Wielomian minimalny
42
5English (en)
Minimal polynomial (linear algebra)
39
6Russian (ru)
Минимальный многочлен матрицы
9
7Ukrainian (uk)
Мінімальний многочлен матриці
8
8Czech (cs)
Minimální polynom (lineární algebra)
6
9Spanish (es)
Polinomio mínimo de un endomorfismo
5
10Vietnamese (vi)
Đa thức cực tiểu (đại số tuyến tính)
5
More...

Scores

Estimated value for Wikipedia:
Japanese:
Global:
Popularity in July 2024:
Japanese:
Global:
Popularity in all years:
Japanese:
Global:
Authors in July 2024:
Japanese:
Global:
Registered authors in all years:
Japanese:
Global:
Citations:
Japanese:
Global:

Quality measures

Interwikis

#LanguageValue
csCzech
Minimální polynom (lineární algebra)
elGreek
Ελάχιστο πολυώνυμο (γραμμική άλγεβρα)
enEnglish
Minimal polynomial (linear algebra)
esSpanish
Polinomio mínimo de un endomorfismo
faPersian
چندجمله‌ای کمینه (جبرخطی)
frFrench
Polynôme minimal d'un endomorphisme
hrCroatian
Minimalni polinom
itItalian
Polinomio minimo
jaJapanese
最小多項式 (線型代数学)
plPolish
Wielomian minimalny
ruRussian
Минимальный многочлен матрицы
shSerbo-Croatian
Minimalni polinom
slSlovenian
Minimalni polinom (linearna algebra)
srSerbian
Минимални полином
svSwedish
Minimalpolynom
ukUkrainian
Мінімальний многочлен матриці
viVietnamese
Đa thức cực tiểu (đại số tuyến tính)
zhChinese
極小多項式 (線性代數)

Popularity rank trends

Best Rank Japanese:
#155130
07.2020
Global:
#267000
11.2014

AI rank trends

Best Rank Japanese:
#19604
11.2010
Global:
#58812
04.2010

Languages comparison

Important global interconnections

Wikipedia readers most often find their way to information on Minimal polynomial from Wikipedia articles about Cayley–Hamilton theorem, Characteristic polynomial, Wikipedia article, Minimal polynomial and Minimal polynomial. Whereas reading the article about Minimal polynomial people most often go to Wikipedia articles on Cayley–Hamilton theorem, Characteristic polynomial, Monic polynomial, Minimal polynomial and 自己準同型写像の多項式.

Cumulative results of quality and popularity of the Wikipedia article

List of Wikipedia articles in different languages (starting with the most popular):

News from 8 July 2025

On 8 July 2025 in multilingual Wikipedia, Internet users most often read articles on the following topics: Diogo Jota, João Pedro, Ozzy Osbourne, Laura Siegemund, Aryna Sabalenka, Julian McMahon, Jurassic World Rebirth, 2025 FIFA Club World Cup, Amanda Anisimova, F1.

In Japanese Wikipedia the most popular articles on that day were: 遠野なぎこ, 神谷宗幣, ジャーメイン良, 秀和幡ヶ谷レジデンス, 参政党, 内田有紀, 鶴保庸介, 牛田茉友, 田久保眞紀, EAFF E-1サッカー選手権.

About WikiRank

The WikiRank project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 44 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from August, 2024. When calculating current popularity and AI of articles data from July 2024 was taken into account. For historical values of popularity and AI WikiRank used data from 2001 to 2023... More information