円周率の無理性の証明

ja

WikiRank.net
ver. 1.6

円周率の無理性の証明

Quality:

Proof that π is irrational - mathematical proof. Article "円周率の無理性の証明" in Japanese Wikipedia has 17.3 points for quality (as of July 1, 2025). The article contains 12 references and 11 sections.

This article has the best quality in English Wikipedia. Also, this article is the most popular in that language version.

Since the creation of article "円周率の無理性の証明", its content was written by 24 registered users of Japanese Wikipedia and edited by 254 registered Wikipedia users in all languages.

The article is cited 23 times in Japanese Wikipedia and cited 213 times in all languages.

The highest Authors Interest rank from 2001:

  • Local (Japanese): #4084 in November 2013
  • Global: #33143 in April 2022

The highest popularity rank from 2008:

  • Local (Japanese): #3605 in February 2008
  • Global: #41345 in February 2008

There are 17 language versions for this article in the WikiRank database (of the considered 55 Wikipedia language editions).

The quality and popularity assessment was based on Wikipédia dumps from July 1, 2025 (including revision history and pageviews for previous years).

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1English (en)
Proof that π is irrational
31.3316
2Indonesian (id)
Bukti bahwa π irasional
25.8324
3Ukrainian (uk)
Доказ ірраціональності числа пі
25.4753
4Portuguese (pt)
Prova da irracionalidade de π
24.4617
5German (de)
Beweis der Irrationalität von π
24.4221
6French (fr)
Preuve de l'irrationalité de π
22.8266
7Persian (fa)
اثبات گنگ بودن π
21.1679
8Russian (ru)
Доказательство иррациональности π
19.966
9Japanese (ja)
円周率の無理性の証明
17.3273
10Vietnamese (vi)
Chứng minh π là số vô tỉ
13.9581
More...

The following table shows the most popular language versions of the article.

Most popular in all the time

The most popular language versions of the article "円周率の無理性の証明" in all the time
#LanguagePopularity awardRelative popularity
1English (en)
Proof that π is irrational
1 527 518
2Japanese (ja)
円周率の無理性の証明
573 508
3Spanish (es)
Demostración de la irracionalidad de π
127 503
4Portuguese (pt)
Prova da irracionalidade de π
70 304
5Korean (ko)
원주율의 무리성 증명
48 806
6Italian (it)
Dimostrazione della irrazionalità di π
40 252
7Russian (ru)
Доказательство иррациональности π
27 098
8French (fr)
Preuve de l'irrationalité de π
26 967
9Arabic (ar)
البرهان على أن باي عدد غير كسري
19 884
10Chinese (zh)
证明π是无理数
16 329
More...

The following table shows the language versions of the article with the highest popularity in the last month.

Most popular in June 2025

The most popular language versions of the article "円周率の無理性の証明" in June 2025
#LanguagePopularity awardRelative popularity
1English (en)
Proof that π is irrational
6 101
2Japanese (ja)
円周率の無理性の証明
2 458
3French (fr)
Preuve de l'irrationalité de π
696
4Spanish (es)
Demostración de la irracionalidad de π
553
5Chinese (zh)
证明π是无理数
333
6Russian (ru)
Доказательство иррациональности π
329
7Korean (ko)
원주율의 무리성 증명
251
8Italian (it)
Dimostrazione della irrazionalità di π
202
9Portuguese (pt)
Prova da irracionalidade de π
184
10German (de)
Beweis der Irrationalität von π
107
More...

The following table shows the language versions of the article with the highest Authors’ Interest.

The highest AI

Language versions of the article "円周率の無理性の証明" with the highest Authors Interest (number of authors). Only registered Wikipedia users were taken into account.
#LanguageAI awardRelative AI
1English (en)
Proof that π is irrational
121
2Japanese (ja)
円周率の無理性の証明
24
3Spanish (es)
Demostración de la irracionalidad de π
19
4Italian (it)
Dimostrazione della irrazionalità di π
14
5Arabic (ar)
البرهان على أن باي عدد غير كسري
13
6Hungarian (hu)
A pi irracionális voltának bizonyítása
12
7Portuguese (pt)
Prova da irracionalidade de π
10
8Korean (ko)
원주율의 무리성 증명
8
9German (de)
Beweis der Irrationalität von π
7
10Vietnamese (vi)
Chứng minh π là số vô tỉ
7
More...

The following table shows the language versions of the article with the highest Authors’ Interest in the last month.

The highest AI in June 2025

Language versions of the article "円周率の無理性の証明" with the highest AI in June 2025
#LanguageAI awardRelative AI
1English (en)
Proof that π is irrational
4
2Russian (ru)
Доказательство иррациональности π
2
3German (de)
Beweis der Irrationalität von π
1
4Arabic (ar)
البرهان على أن باي عدد غير كسري
0
5Spanish (es)
Demostración de la irracionalidad de π
0
6Persian (fa)
اثبات گنگ بودن π
0
7French (fr)
Preuve de l'irrationalité de π
0
8Hebrew (he)
אי-רציונליות של פאי
0
9Hungarian (hu)
A pi irracionális voltának bizonyítása
0
10Indonesian (id)
Bukti bahwa π irasional
0
More...

The following table shows the language versions of the article with the highest number of citations.

The highest CI

Language versions of the article "円周率の無理性の証明" with the highest Citation Index (CI)
#LanguageCI awardRelative CI
1English (en)
Proof that π is irrational
51
2Arabic (ar)
البرهان على أن باي عدد غير كسري
29
3Chinese (zh)
证明π是无理数
26
4Portuguese (pt)
Prova da irracionalidade de π
25
5Japanese (ja)
円周率の無理性の証明
23
6Korean (ko)
원주율의 무리성 증명
11
7Vietnamese (vi)
Chứng minh π là số vô tỉ
9
8Spanish (es)
Demostración de la irracionalidad de π
8
9Hungarian (hu)
A pi irracionális voltának bizonyítása
6
10Indonesian (id)
Bukti bahwa π irasional
6
More...

Scores

Estimated value for Wikipedia:
Japanese:
Global:
Popularity in June 2025:
Japanese:
Global:
Popularity in all years:
Japanese:
Global:
Authors in June 2025:
Japanese:
Global:
Registered authors in all years:
Japanese:
Global:
Citations:
Japanese:
Global:

Quality measures

Interwikis

#LanguageValue
arArabic
البرهان على أن باي عدد غير كسري
deGerman
Beweis der Irrationalität von π
enEnglish
Proof that π is irrational
esSpanish
Demostración de la irracionalidad de π
faPersian
اثبات گنگ بودن π
frFrench
Preuve de l'irrationalité de π
heHebrew
אי-רציונליות של פאי
huHungarian
A pi irracionális voltának bizonyítása
idIndonesian
Bukti bahwa π irasional
itItalian
Dimostrazione della irrazionalità di π
jaJapanese
円周率の無理性の証明
koKorean
원주율의 무리성 증명
ptPortuguese
Prova da irracionalidade de π
ruRussian
Доказательство иррациональности π
ukUkrainian
Доказ ірраціональності числа пі
viVietnamese
Chứng minh π là số vô tỉ
zhChinese
证明π是无理数

Popularity rank trends

Best Rank Japanese:
#3605
02.2008
Global:
#41345
02.2008

AI rank trends

Best Rank Japanese:
#4084
11.2013
Global:
#33143
04.2022

Local popularity rank history

Local AI rank history

Languages comparison

Important global interconnections (July 2024 – June 2025)

Wikipedia readers most often find their way to information on Proof that π is irrational from Wikipedia articles about Pi, Johann Heinrich Lambert, Chronology of computation of π, Proof that e is irrational and Irrational number. Whereas reading the article about Proof that π is irrational people most often go to Wikipedia articles on Lindemann–Weierstrass theorem, Proof that e is irrational, Transcendental number, Pi and Irrational number.

Cumulative results of quality and popularity of the Wikipedia article

List of Wikipedia articles in different languages (starting with the most popular):

News from 12 August 2025

On 12 August 2025 in multilingual Wikipedia, Internet users most often read articles on the following topics: Cristiano Ronaldo, Wednesday, Georgina Rodríguez, ChatGPT, Weapons, Jenna Ortega, deaths in 2025, Taylor Swift, Miguel Uribe Turbay, 2025–26 UEFA Champions League.

In Japanese Wikipedia the most popular articles on that day were: 日本航空123便墜落事故, 坂本九, 二階堂ふみ, カズレーザー, 北原遥子, やなせたかし, 柏木由紀子, 大竹七未, 大島花子, 舞坂ゆき子.

About WikiRank

The WikiRank project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 44 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from July, 2025. When calculating current popularity and AI of articles data from June 2025 was taken into account. For historical values of popularity and AI WikiRank used data from 2001 to 2025... More information