ゲーゲンバウアー多項式

ja

WikiRank.net
ver. 1.6

ゲーゲンバウアー多項式

Quality:
5

Gegenbauer polynomials - orthogal polynomial sequence on the interval [−1,1] with respect to the weight function (1−?²)^{?−½}. Article "ゲーゲンバウアー多項式" in Japanese Wikipedia has 5.6 points for quality (as of August 1, 2024). The article contains 0 references and 3 sections.

This article has the best quality in Ukrainian Wikipedia. However, the most popular language version of this article is English.

Since the creation of article "ゲーゲンバウアー多項式", its content was written by 5 registered users of Japanese Wikipedia and edited by 110 registered Wikipedia users in all languages.

The article is cited 11 times in Japanese Wikipedia and cited 166 times in all languages.

The highest Authors Interest rank from 2001:

  • Local (Japanese): #25530 in June 2015
  • Global: #121705 in October 2006

The highest popularity rank from 2008:

  • Local (Japanese): #346105 in November 2014
  • Global: #650850 in November 2014

There are 11 language versions for this article in the WikiRank database (of the considered 55 Wikipedia language editions).

The quality and popularity assessment was based on Wikipédia dumps from August 1, 2024 (including revision history and pageviews for previous years).

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1Ukrainian (uk)
Поліноми Ґеґенбауера
38.6838
2English (en)
Gegenbauer polynomials
26.9748
3Russian (ru)
Многочлены Гегенбауэра
19.9596
4Spanish (es)
Polinomios de Gegenbauer
18.7452
5Chinese (zh)
盖根鲍尔多项式
13.6803
More...

The following table shows the most popular language versions of the article.

Most popular in all the time

The most popular language versions of the article "ゲーゲンバウアー多項式" in all the time
#LanguagePopularity awardRelative popularity
1English (en)
Gegenbauer polynomials
222 112
2German (de)
Gegenbauer-Polynom
21 195
3Japanese (ja)
ゲーゲンバウアー多項式
19 986
4French (fr)
Polynôme de Gegenbauer
17 140
5Russian (ru)
Многочлены Гегенбауэра
10 991
More...

The following table shows the language versions of the article with the highest popularity in the last month.

Most popular in July 2024

The most popular language versions of the article "ゲーゲンバウアー多項式" in July 2024
#LanguagePopularity awardRelative popularity
1English (en)
Gegenbauer polynomials
1 610
2Japanese (ja)
ゲーゲンバウアー多項式
117
3German (de)
Gegenbauer-Polynom
90
4French (fr)
Polynôme de Gegenbauer
74
5Spanish (es)
Polinomios de Gegenbauer
54
More...

The following table shows the language versions of the article with the highest Authors’ Interest.

The highest AI

Language versions of the article "ゲーゲンバウアー多項式" with the highest Authors Interest (number of authors). Only registered Wikipedia users were taken into account.
#LanguageAI awardRelative AI
1English (en)
Gegenbauer polynomials
36
2German (de)
Gegenbauer-Polynom
17
3Italian (it)
Polinomi di Gegenbauer
15
4French (fr)
Polynôme de Gegenbauer
11
5Chinese (zh)
盖根鲍尔多项式
9
More...

The following table shows the language versions of the article with the highest Authors’ Interest in the last month.

The highest AI in July 2024

Language versions of the article "ゲーゲンバウアー多項式" with the highest AI in July 2024
#LanguageAI awardRelative AI
1German (de)
Gegenbauer-Polynom
0
2English (en)
Gegenbauer polynomials
0
3Spanish (es)
Polinomios de Gegenbauer
0
4French (fr)
Polynôme de Gegenbauer
0
5Italian (it)
Polinomi di Gegenbauer
0
More...

The following table shows the language versions of the article with the highest number of citations.

The highest CI

Language versions of the article "ゲーゲンバウアー多項式" with the highest Citation Index (CI)
#LanguageCI awardRelative CI
1Swedish (sv)
Gegenbauerpolynom
40
2English (en)
Gegenbauer polynomials
33
3Italian (it)
Polinomi di Gegenbauer
19
4Russian (ru)
Многочлены Гегенбауэра
17
5French (fr)
Polynôme de Gegenbauer
11
More...

Scores

Estimated value for Wikipedia:
Japanese:
Global:
Popularity in July 2024:
Japanese:
Global:
Popularity in all years:
Japanese:
Global:
Authors in July 2024:
Japanese:
Global:
Registered authors in all years:
Japanese:
Global:
Citations:
Japanese:
Global:

Quality measures

Interwikis

#LanguageValue
deGerman
Gegenbauer-Polynom
enEnglish
Gegenbauer polynomials
esSpanish
Polinomios de Gegenbauer
frFrench
Polynôme de Gegenbauer
itItalian
Polinomi di Gegenbauer
jaJapanese
ゲーゲンバウアー多項式
ruRussian
Многочлены Гегенбауэра
srSerbian
Гегенбауерови полиноми
svSwedish
Gegenbauerpolynom
ukUkrainian
Поліноми Ґеґенбауера
zhChinese
盖根鲍尔多项式

Popularity rank trends

Best Rank Japanese:
#346105
11.2014
Global:
#650850
11.2014

AI rank trends

Best Rank Japanese:
#25530
06.2015
Global:
#121705
10.2006

Languages comparison

Important global interconnections

Wikipedia readers most often find their way to information on Gegenbauer polynomials from Wikipedia articles about Orthogonal polynomials, Jacobi polynomials, Legendre polynomial, Chebyshev polynomial and N-sphere. Whereas reading the article about Gegenbauer polynomials people most often go to Wikipedia articles on Jacobi polynomials, Chebyshev polynomial, Legendre polynomial, Leopold Gegenbauer and Romanovski polynomials.

Cumulative results of quality and popularity of the Wikipedia article

List of Wikipedia articles in different languages (starting with the most popular):

News from 28 March 2025

On 28 March 2025 in multilingual Wikipedia, Internet users most often read articles on the following topics: Myanmar, Adolescence, Greenland, Solar eclipse of March 29, 2025, Snow White, Rachel Zegler, deaths in 2025, Incel, Selena, Usha Vance.

In Japanese Wikipedia the most popular articles on that day were: 中孝介, グレイテスト・ショーマン, ゴイアニア被曝事故, 若林楽人, 広末涼子, 宮世琉弥, P・T・バーナム, 岩下志麻, リサ (BLACKPINK), トレイ・キャベッジ.

About WikiRank

The WikiRank project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 44 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from August, 2024. When calculating current popularity and AI of articles data from July 2024 was taken into account. For historical values of popularity and AI WikiRank used data from 2001 to 2023... More information