Spektralzerlegung (Mathematik)

de

WikiRank.net
ver. 1.6

Spektralzerlegung (Mathematik)

Quality:

Eigendecomposition of a matrix - matrix decomposition. Article "Spektralzerlegung (Mathematik)" in German Wikipedia has 53.8 points for quality (as of August 1, 2024). The article contains 32 references and 18 sections.

In this language version of Wikipedia the article has the best quality. However, the most popular language version of this article is English.

Since the creation of article "Spektralzerlegung (Mathematik)", its content was written by 7 registered users of German Wikipedia and edited by 246 registered Wikipedia users in all languages.

The article is cited 7 times in German Wikipedia and cited 474 times in all languages.

The highest Authors Interest rank from 2001:

  • Local (German): #12967 in November 2021
  • Global: #42786 in October 2021

The highest popularity rank from 2008:

  • Local (German): #133316 in May 2022
  • Global: #63078 in October 2019

There are 14 language versions for this article in the WikiRank database (of the considered 55 Wikipedia language editions).

The quality and popularity assessment was based on Wikipédia dumps from August 1, 2024 (including revision history and pageviews for previous years).

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1German (de)
Spektralzerlegung (Mathematik)
53.771
2English (en)
Eigendecomposition of a matrix
45.9298
3Catalan (ca)
Descomposició en valors propis d'una matriu
38.5907
4Spanish (es)
Descomposición en valores propios de una matriz
38.4525
5Russian (ru)
Спектральное разложение матрицы
33.5245
6Japanese (ja)
固有値分解
24.2564
7Czech (cs)
Spektrální rozklad
18.9029
8Chinese (zh)
特征分解
15.8383
9Persian (fa)
تجزیه‌ویژه یک ماتریس
11.6549
10Turkish (tr)
Özdeğer ayrışımı
10.2627
More...

The following table shows the most popular language versions of the article.

Most popular in all the time

The most popular language versions of the article "Spektralzerlegung (Mathematik)" in all the time
#LanguagePopularity awardRelative popularity
1English (en)
Eigendecomposition of a matrix
3 130 465
2Chinese (zh)
特征分解
279 967
3Russian (ru)
Спектральное разложение матрицы
72 516
4French (fr)
Décomposition d'une matrice en éléments propres
56 899
5Japanese (ja)
固有値分解
31 008
6Korean (ko)
고유값 분해
30 744
7German (de)
Spektralzerlegung (Mathematik)
19 601
8Catalan (ca)
Descomposició en valors propis d'una matriu
6 302
9Ukrainian (uk)
Власний розклад матриці
5 240
10Spanish (es)
Descomposición en valores propios de una matriz
4 958
More...

The following table shows the language versions of the article with the highest popularity in the last month.

Most popular in July 2024

The most popular language versions of the article "Spektralzerlegung (Mathematik)" in July 2024
#LanguagePopularity awardRelative popularity
1English (en)
Eigendecomposition of a matrix
14 205
2Chinese (zh)
特征分解
1 334
3Russian (ru)
Спектральное разложение матрицы
717
4German (de)
Spektralzerlegung (Mathematik)
716
5Japanese (ja)
固有値分解
597
6Spanish (es)
Descomposición en valores propios de una matriz
200
7Korean (ko)
고유값 분해
173
8French (fr)
Décomposition d'une matrice en éléments propres
162
9Persian (fa)
تجزیه‌ویژه یک ماتریس
48
10Ukrainian (uk)
Власний розклад матриці
37
More...

The following table shows the language versions of the article with the highest Authors’ Interest.

The highest AI

Language versions of the article "Spektralzerlegung (Mathematik)" with the highest Authors Interest (number of authors). Only registered Wikipedia users were taken into account.
#LanguageAI awardRelative AI
1English (en)
Eigendecomposition of a matrix
145
2Russian (ru)
Спектральное разложение матрицы
43
3French (fr)
Décomposition d'une matrice en éléments propres
16
4German (de)
Spektralzerlegung (Mathematik)
7
5Japanese (ja)
固有値分解
7
6Chinese (zh)
特征分解
6
7Italian (it)
Autodecomposizione
4
8Catalan (ca)
Descomposició en valors propis d'una matriu
3
9Czech (cs)
Spektrální rozklad
3
10Persian (fa)
تجزیه‌ویژه یک ماتریس
3
More...

The following table shows the language versions of the article with the highest Authors’ Interest in the last month.

The highest AI in July 2024

Language versions of the article "Spektralzerlegung (Mathematik)" with the highest AI in July 2024
#LanguageAI awardRelative AI
1Czech (cs)
Spektrální rozklad
3
2English (en)
Eigendecomposition of a matrix
1
3Catalan (ca)
Descomposició en valors propis d'una matriu
0
4German (de)
Spektralzerlegung (Mathematik)
0
5Spanish (es)
Descomposición en valores propios de una matriz
0
6Persian (fa)
تجزیه‌ویژه یک ماتریس
0
7French (fr)
Décomposition d'une matrice en éléments propres
0
8Italian (it)
Autodecomposizione
0
9Japanese (ja)
固有値分解
0
10Korean (ko)
고유값 분해
0
More...

The following table shows the language versions of the article with the highest number of citations.

The highest CI

Language versions of the article "Spektralzerlegung (Mathematik)" with the highest Citation Index (CI)
#LanguageCI awardRelative CI
1English (en)
Eigendecomposition of a matrix
130
2Japanese (ja)
固有値分解
130
3Chinese (zh)
特征分解
79
4Russian (ru)
Спектральное разложение матрицы
69
5Catalan (ca)
Descomposició en valors propis d'una matriu
13
6Ukrainian (uk)
Власний розклад матриці
12
7Korean (ko)
고유값 분해
9
8Persian (fa)
تجزیه‌ویژه یک ماتریس
8
9German (de)
Spektralzerlegung (Mathematik)
7
10Spanish (es)
Descomposición en valores propios de una matriz
7
More...

Scores

Estimated value for Wikipedia:
German:
Global:
Popularity in July 2024:
German:
Global:
Popularity in all years:
German:
Global:
Authors in July 2024:
German:
Global:
Registered authors in all years:
German:
Global:
Citations:
German:
Global:

Quality measures

Interwikis

#LanguageValue
caCatalan
Descomposició en valors propis d'una matriu
csCzech
Spektrální rozklad
deGerman
Spektralzerlegung (Mathematik)
enEnglish
Eigendecomposition of a matrix
esSpanish
Descomposición en valores propios de una matriz
faPersian
تجزیه‌ویژه یک ماتریس
frFrench
Décomposition d'une matrice en éléments propres
itItalian
Autodecomposizione
jaJapanese
固有値分解
koKorean
고유값 분해
ruRussian
Спектральное разложение матрицы
trTurkish
Özdeğer ayrışımı
ukUkrainian
Власний розклад матриці
zhChinese
特征分解

Popularity rank trends

Best Rank German:
#133316
05.2022
Global:
#63078
10.2019

AI rank trends

Best Rank German:
#12967
11.2021
Global:
#42786
10.2021

Languages comparison

Important global interconnections

Wikipedia readers most often find their way to information on Eigendecomposition of a matrix from Wikipedia articles about Spectral decomposition, Singular value decomposition, Matrix decomposition, Eigenvectors and eigenvalues and Spectral theorem. Whereas reading the article about Eigendecomposition of a matrix people most often go to Wikipedia articles on Diagonalizable matrix, Eigenvectors and eigenvalues, Spectral theorem, Canonical form and Orthogonal matrix.

Cumulative results of quality and popularity of the Wikipedia article

List of Wikipedia articles in different languages (starting with the most popular):

News from 5 January 2025

On 5 January 2025 in multilingual Wikipedia, Internet users most often read articles on the following topics: Squid Game, Squid Game, season 2, Avicii, Nosferatu, Epiphany, human metapneumovirus, Jimmy Carter, Elon Musk, Jeff Baena, Aubrey Plaza.

In German Wikipedia the most popular articles on that day were: Der Gesang der Flusskrebse, Der Gesang der Flusskrebse (Film), Christian Stocker, Levi Strauss, Avicii, Ottilie von Faber-Castell, Squid Game, Herbert Kickl, Liste der größten Auslegerbrücken, Out of Sight.

About WikiRank

The WikiRank project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 44 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from August, 2024. When calculating current popularity and AI of articles data from July 2024 was taken into account. For historical values of popularity and AI WikiRank used data from 2001 to 2023... More information