2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽

ZH

WikiRank.net
ver. 0.96

2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽

Article "2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽" in Chinese Wikipedia has 45.254 points for quality and 0.5376 points for popularity. The article contains, among others metrics, 10 references and 6 sections. In this language version of Wikipedia the article has the best quality. However, the most popular language version of this article is English.

There are 12 language versions for this article in WikiRank database (of the considered 55 Wikipedia language editions).

Data as of May 1, 2019. Query time 0.0329 sec.

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1Chinese
2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽
45.254
2Polish
Kajakarstwo na Letnich Igrzyskach Olimpijskich 2016 – C-1 mężczyzn
31.7738
3Finnish
Melonta kesäolympialaisissa 2016 – miesten koskimelonnan kanadalaisyksikkö
30.4435
4English
Canoeing at the 2016 Summer Olympics – Men's slalom C-1
28.3244
5Russian
Гребной слалом на летних Олимпийских играх 2016 — каноэ-одиночки (мужчины)
27.8711

The following table shows the most popular language versions of the article.

The most popular languages

#LanguageRelative awardRelative popularity
1English
Canoeing at the 2016 Summer Olympics – Men's slalom C-1
100
2Russian
Гребной слалом на летних Олимпийских играх 2016 — каноэ-одиночки (мужчины)
35.4839
3French
Canoë-kayak aux Jeux olympiques d'été de 2016 - C1 hommes (slalom)
5.914
4Polish
Kajakarstwo na Letnich Igrzyskach Olimpijskich 2016 – C-1 mężczyzn
5.914
5Finnish
Melonta kesäolympialaisissa 2016 – miesten koskimelonnan kanadalaisyksikkö
5.3763

The following table shows the language versions of the article with the highest Authors’ Interest.

Languages with the highest AI

#LanguageRelative awardRelative AI
1Russian
Гребной слалом на летних Олимпийских играх 2016 — каноэ-одиночки (мужчины)
0
2Portuguese
Canoagem nos Jogos Olímpicos de Verão de 2016 - Slalom C-1 masculino
0
3Turkish
2016 Yaz Olimpiyatları'nda kano - Erkekler slalom C-1
0
4Ukrainian
Гребний слалом на літніх Олімпійських іграх 2016 — каное-одиночки (чоловіки)
0
5Chinese
2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽
0

Scores

Quality:
Local AI (Chinese): 0
Global AI: 0
Local popularity (Chinese): 1
Local popularity - daily: 0
Global popularity: 178
Global popularity - daily: 4

Quality measures

Languages comparsion

Cumulative results

About WikiRank

The project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 38 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from May, 2019. When calculating popularity, view statistics of articles for last month (April 2019) were taken into account.

You can also visit WikiRank.Live (previous version of the main tool), which can calculate quality and popularity based on current versions of Wikipedia articles in 7 languages.

It's planned to add different improvements to the project (such as adding to the analysis not only new quantitative characteristics, but also qualitative). In addition, it is planned to add estimates using machine learning algorithms and artificial intelligence, as well as based on the results of user comparison of specific multilingual information (for example, the WikiBest project). Please leave your comments and suggestions

More information about quality assessment of Wikipedia articles and project WikiRank can be found in scientific publications:

Additional information about quality issues can be found on Wikipedia Quality portal.

WikiRank video

Template by Colorlib
2015-2019, WikiRank.net

Quality and popularity formulas for the article 2016年夏季奧林匹克運動會男子單人加拿大式艇輕艇激流比賽 ZH

$$Quality=1/c∑↙{i=1}↖c nm_i-RS=1/5(27.83+10.87+100+50+37.57)$$

where:

$$AI(global)=|⋃↙{i=1}↖12 Authors(lang_i)|=0\,\,\,\,\,\,\,\,\,\,\,\, Pop(global)=∑↙{i=1}↖12 Pop(lang_i)=4$$

where:

The results of the calculations may be slightly different because of rounded values of normalized metrics in formulas